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Executive summary
 1. Pollutants in the air we breathe are detrimental to human health. Long-term exposure 

to air particulate matter in Acre, Brazil, has decreased the average life expectancy by 
an estimated 2–3 years. Smoke from rural fires is the major source affecting air quality 
at Rio Branco.

 2. Observations of fine particulate matter (PM2.5) have become available in Acre through 
the Purple Air project. Uncorrected data shows that in Rio Branco, an estimated 125 
days exceeded the WHO’s daily guidance for PM2.5 levels during the dry season in 2019.

 3. Satellite observations indicate that rural fires are densely distributed around Rio 
Branco itself, North Rondônia, as well as northeastern and central Bolivia.

 4. The source of the smoke arriving at Rio Branco within 6 days comes from nearby areas 
to the north and east (64% of the time), from the south (31% of the time) or from 
the east (5% of the time). The average 6-day air parcel spends half of its time inside a 
radius of just 266 km around Rio Branco.

 5. Rural fires around Rio Branco are expected to increase due to changes in climate 
by 38% within 500 km by 2090, under the fossil fuel intensive IPCC scenario. Our 
analysis also shows that the number of smoke-producing rural fires within two days of 
wind transport of Rio Branco is expected to increase by a third by 2090. This does not 
include the effect of increased tree mortality in the region or changes in land cover 
and land use.

 6. To improve air quality, fires must be reduced now from their present level.
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1. Introduction
The air we all breathe

The air we breathe can have profound and long-lasting impacts on our health. Numerous 
pollutants, including ozone, nitrogen dioxide, carbon monoxide, sulfur dioxide, and 
particulate matter, have been identified as potential contributors to a range of health 
impacts. Among these, of particular concern is the release of particulate matter into the 
air (PM2.5 and PM10). These microscopic particles can penetrate deep into the body, 
exacerbating serious conditions such as heart and lung disease, cancer, cognitive problems 

and susceptibility to COVID-19 (Sakhvidi et al., 2022, 
Mendy et al., 2021, Zhang et al., 2018, Xing et al., 2016, 
Kaufman et al., 2016).

A natural way to understand the impact of prolonged 
exposure to air pollution on public health is to consider 
its effect on life expectancy. Studies by Chen et al. (2013) 
and Ebenstein et al. (2017), alongside the University of 
Chicago AQLI project, have attempted to quantify this 
impact. Their findings indicate that an increase of 10 µg/m3 
in PM10 can reduce life expectancy by 0.64 years, while the 
corresponding reduction for PM2.5 is 0.98 years. Such long-
term effects can exert substantial pressure on healthcare 
infrastructures, highlighting the importance for authorities 
to take measures to identify the sources of pollutants and 
minimize their presence in the air we breathe.

The World Health Organization has established guidelines 
to assist policymakers in determining safe levels of 
outdoor air pollution (World Health Organization, 2021). 
The 2021 guidelines recommend that the annual average 
concentrations of PM2.5 should not exceed 5 µg/m3, 
and 24-hour averages should not exceed 15 µg/m3 for 
more than 3–4 days per year. Unfortunately, most of the 
world’s population is not living in areas that satisfy these 
recommendations. Satellite-derived PM2.5 observations 

from 2020 indicate that these guidelines are exceeded for 97.3% of the world’s population 
(Greenstone et al., 2022), resulting in an estimated global loss of life expectancy of 
approximately 2.2 years per person, according to the AQLI dataset. This means that 
globally, air pollution poses a greater risk to human life than alcohol, firsthand smoking, 
malaria, or unsafe drinking water.

The introduction of particulate matter into the atmosphere commonly occurs through the 
combustion of biomass and fossil fuels, i.e., from motor vehicles, industry or rural fires. 
However, it is not necessary to live in close proximity to a pollutant source to be exposed 
to dangerous concentration levels. In fact, particulate matter may stay in the atmosphere 
for anywhere from minutes to weeks, depending on the properties of the particles (Esmen 
& Corn, 1971), meaning that smaller particulate matter such as PM2.5 can be carried by 
air currents for potentially hundreds of miles. In the case of high heat accompanying an 
emission source, such as with rural fires, large plumes can be generated, lifting particles 
high into the atmosphere and extending their range (Martin et al., 2012). Therefore, when 
analyzing air pollution risk, one must consider factors such as location, atmospheric flow, 
meteorological conditions, particle properties, and the source type.
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Air pollution is a global issue that is not bound by international borders—the potential 
range of some pollutants means that air quality is a truly international and transnational 
issue. It is essential for nations to collaborate in an effort to understand both the sources 
and transport of pollutants. By working together, countries can take effective measures to 
safeguard public health for present and future generations.

Rio Branco and Amazonia

In this study, we assess present observations and make future projections of fire-related 
air quality for Rio Branco in the Brazilian state of Acre (see Figures 1 and 2). The state 
of Acre lies in the far west of Brazil, nestled amongst neighboring countries of Peru to 
the West, Bolivia to the South and the Brazilian states of Amazonas and Rondônia to 
the North and East. Rio Branco, the capital of Acre and a municipality of approximately 
420,000 people, lies in the southeast of the state, less than 50 miles from both the 
international border with Bolivia and state border with Amazonas. Figure 2 shows land 
cover types according to the MODIS land cover dataset. Much of the area surrounding 
Rio Branco is occupied by rainforest (Evergreen Broadleaf Forest), especially to the north 
and the west. Acre itself is relatively flat and low lying, however the basin is bounded 
distantly in the west by the Andes Mountains, which controls much of the ground level 
atmospheric flow.

Also apparent in Figure 2 are the 
alterations left on the landscape by 
human influences and activities. 
The highways that connect 
settlements can be seen as lines of 
reduced forest cover and increased 
land cover types such as savanna 
and shrubland, e.g., extending out 
from Rio Branco to municipalities 
in the north and west of Acre. 
In some areas, the effects of 
deforestation can be seen, for 
example in the areas immediately 
surrounding Rio Branco and in 
much of Rondônia and Bolivia. 
Many of these areas have 
undergone significant deforestation 
in recent decades. According to 
Global Forest Watch (Global Forest 
Watch, 2023) and the Global Land 

Analysis & Discovery (GLAD) dataset, this ranges from as much as 19% forest loss in 
Rondônia to 0.96% in Amazonas. Acre itself has seen 5.7% forest loss between 2000 and 
2020. Forest loss for other surrounding regions is summarized in the table below.

Figure 2. Rio Branco in the Brazilian state of Acre and surrounding states and 
countries. Colors show the land cover type according to the MODIS Land Cover 
dataset for 2020

Country / State Tree Cover Loss
Rondônia 3.30 Mha (19%)

Acre 802 kha (5.7%)

Bolivia 3.32 Mha (5.6%)

Peru 762 kha (0.97%)

Amazonas 1.42 Mha (0.96%)
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Human influences like deforestation are a significant driver of one of the primary 
contributors to air pollutants in the region: rural fire. Although rural fires can occur 
naturally (often initiated by a lightning strike), studies have shown that most fire 
events in many areas are related to human impacts (Balch et al., 2017). Deforestation 
can exacerbate the problem by reducing dense forest area, which holds moisture and 
humidity better than the less vegetated areas that replace them (Cardil et al., 2020). 
The probability of rural fire ignition and spread is also a function of meteorological 
variables such as precipitation, drought, temperature and wind speed. The Fire Weather 
Index (FWI) is a daily, unitless measurement which combines these meteorological 
variables in an attempt to account for the effects of fuel moisture and wind on the 
behavior of rural fires. The metric was developed by the Canadian Forest Service (Stocks 
et al., 1989) and has seen use globally in the prediction of rural fire risk. In a world of 
changing climates, meteorological risk factors may change in the future and the FWI is 
useful for making projections of this risk. Later in this report, we make use of the FWI 
to make such projections.

In the following sections, we present three analyses for Rio Branco: 

1. First, we provide an overview of present day (2000–2020) air quality in Rio Branco and 
rural fires in the surrounding area (Section 2). This is done using satellite and ground 
level observing instruments which can record particulate matter concentrations. Rural 
fire spatial distributions are also estimated using satellite observations.

2. We simulate the trajectories of air parcels to estimate where air arriving at Rio Branco 
daily has been 6 days previously (Section 3).

3. We project upstream rural fire risk using the Fire Weather Index metric and machine 
learning (Section 4).
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2. Present day air quality in Rio Branco
Air quality observations can be broadly categorized into two types: remotely-sensed data 
obtained from satellite observations, and in-situ data obtained from instruments on the 
ground. Each category has its own benefits and limitations.

1. Remotely Sensed Observations. Satellites are able to observe large areas, however 
their observations may have temporal inconsistencies. The orbital period of satellites, 
and cloudy days and night time reduce the effective time for monitoring. Despite this 
limitation, their data are used for obtaining low frequency averages over a region. 
Measurements of particulate matter are often derived from a satellite observed metric 
called Aerosol Optical Depth (AOD).

2. In-situ measurements. Conversely to remotely sensed observations, in-situ 
measurements provide on the ground data for a fixed location. However, they can do 
this at a very high frequency and report conditions that are often more relevant for the 
local communities, who breathe the air.

In a nutshell, in-situ measurements provide the best representation of local conditions, 
however they have spatial limitations. On the other hand, satellite observations can fill in 
the spatial gaps but with temporal limitations. Often, spatially and temporally “complete” 
datasets can be created by combining both types of observations with estimates from 
computer simulations using a technique called data assimilation. 

Figure 3 shows a selection of time series of PM2.5 concentrations across Acre between 
the years 2000 and 2018. Location specific data (at Rio Branco and Cruzeiro do Sul) is 
taken from a gridded dataset created by the University of Washington St. Louis (van 
Donkelaar et al., 2021). This data estimates surface PM2.5 at the monthly level by 
combining satellite AOD, simulations using a chemical transport model and ground-based 
observations where available. The figure also shows the annual average across all of Acre, 
which is what is used in the life expectancy estimates from the AQLI dataset mentioned in 
Section 1. 

Figure 3(a) shows monthly mean PM2.5 concentrations at the two locations in Acre. The 
data shows a seasonal cycle in PM2.5 at both locations, which aligns well with the fire 
season (July–November), suggesting that this signal is primarily driven by rural fires. 
Annual peaks are higher every year in Rio Branco than in Cruzeiro do Sul, as shown 
in Figure 3(c). Figure 3(b) shows the annual mean PM2.5 levels at each location and 
across all of Acre. Despite some annual variability, all annual averages exceed the WHO 
guideline threshold of 5 µg/m3 per year. Using the AQLI life expectancy loss estimates, 
this translates into an average loss of life expectancy in Acre of 2.7 years, equating to a 
total loss of approximately 2.5 million years of life1.

1  With an estimated 2021 
population of 906,876 in 
Acre.
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The AQLI dataset is a powerful tool for quantifying the impacts of air pollution. However, 
further study is needed to quantify the long term health effects of air pollution, especially 
particulate matter. The studies used in the AQLI project focus on urban populations in 
China, and the results here have been extrapolated globally. More localized assessments of 
air quality health impacts are relatively limited however.

The previously discussed limitations of satellite data place constraints on how finely 
resolved the above measurements can be spatially. The resulting averaging scales 
mean that the data may not perfectly represent the air that is actually being breathed 
by someone in Rio Branco. For this, we need high frequency consistent in-situ 
measurements. Historically, such observations for Rio Branco and surrounding regions 
have been scarce. However, recent funding allowed for the installation of a number of 
in-situ instruments to be a part of the Purple Air network (https://www2.purpleair.com). 
These instruments have been recording high frequency particulate matter concentrations 
at a number of locations around Acre, including Rio Branco since 2018.

Figure 3. PM2.5 observations derived from satellite measurements at Rio Branco, Cruzeiro do 
Sul and averaged across all of Acre. Top: Monthly mean measurements, Middle: Annual mean 
measurements. Bottom: Annual maxima of monthly mean time series. Data is taken from the 
Donkelaar (University of Washington St Louis) dataset.
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Figure 4 shows examples of time series taken from 4 of these locations: two near Cruzeiro 
do Sul and two near Rio Branco. The values shown are raw data and uncorrected to 
account for calibration errors. The locations of the available Purple Air sensors in Acre are 
also shown. It is clear from the figure that, in the raw data, the WHO guidelines for daily 
concentrations (shown by the red dashed line) are frequently exceeded. For example, In 
2019 there are 125 days exceeding 15 µg/m3. 

Figure 4. Examples of high frequency observations of PM2.5 from four Purple Air sensors in Acre. 
The available sensor locations in Acre, as of 30th March 2023, are shown in the right panel. On 
the left, the top row shows data for near Cruzeiro do Sul and the bottom shows data for near Rio 
Branco. Red dashed lines show the WHO guidelines for daily PM2.5 concentration levels.
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3. Where is the smoke coming from?
When considering the source of the smoke that arrives at Rio Branco, there are a number 
of separate questions to consider. Two of the most important are discussed in the 
following sections.

3.1 Where are the rural fires?

For this section, we need observations of rural fire events. In this study, we have used the 
FiredPy fire event delineation model (Balch, 2020) to define fire event polygons using 
MODIS burned area data (Giglio, 2018). The MODIS product uses satellites to identify 
where and when burning has occurred at a resolution of 500 m. The FiredPy system 
then ingests this data to identify distinct fire events, including a geospatial shape of fire, 
ignition location, total burned area and burn rates. We can analyze this data to determine 
spatial distributions of fire in the study area.

Figure 5 shows the number of 
fire events per year (according to 
ignition location), as observed by 
the MODIS data, within 1⁄4-degree 
grid cells. The distribution is shown 
for our study area: Bolivia, Peru 
and the Brazilian states of Acre, 
Amazonia and Rondônia. It is 
important to consider a large area 
in this analysis as the potential 
range of particulate matter can 
be large, as discussed in Section 1. 
Many of the patterns we see in this 
data are closely associated with the 
land cover distribution shown in 
Figure 2, for example:

■ Fire events are observed most 
abundantly in less vegetated 
regions (e.g., savanna, 
shrubland, grassland) around 
Rio Branco, across to Porto 
Velho and in central 

Bolivia. Many of these areas have undergone significant deforestation.

■ North and west of Rio Branco, moving into Peru and Amazonas, we see fewer fire 
events and these regions are generally much more heavily forested. This may be due 
to a combination of reduced human influence and better moisture retention than 
shrublands or savanna-like areas.

■ A small number of fire events follow alongside natural features such as the Amazon 
River and its tributaries, indicating the presence of human influence.

■ Areas described as the “bare” land cover type such as southwest Bolivia or coastal 
Peru see very few to no fire events at all. This makes sense as there isn’t the biomass to 
burn in these areas.

Figure 5. Gridded fire distributions. Each value shows the number of fire events per 
year within a 1/4-degree grid box according to MODIS burned area data and the 
FiredPy event identification model.

Fire Events
Per Year
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3.2 Where does the smoke go?

Understanding how emissions travel through the atmosphere from the locations depicted 
in Figure 5 is crucial, particularly in determining the likelihood of pollutants reaching 
Rio Branco. Most importantly, we need to know how likely emissions are to reach Rio 
Branco. In this study, we employed the HYSPLIT (Hybrid Single-Particle Lagrangian 
Integrated Trajectory) model developed by NOAA (Stein, 2015) to simulate the pathways 
that air parcels take before reaching Rio Branco. HYSPLIT’s trajectory mode functions 
by treating an air parcel as a single particle that is suspended and carried through the 
atmospheric flow. This atmospheric flow is three-dimensional and provided by the 
user. For this analysis, we have used the “backwards” mode of HYSPLIT, to push the 
particle through a reversed flow. Instead of being pushed forward from Rio Branco by the 
atmospheric winds, we reverse the wind direction to see where it is likely to have come 
from. These backwards trajectories are simulated for six days prior to arrival at 50 m 
above Rio Branco.

To accurately model the movement of air parcels, we utilize the GDAS (Global Data 
Assimilation System) 1-degree atmospheric data. This dataset contains all necessary 
atmospheric variables at multiple vertical levels. While a higher resolution may be 
necessary for more localized analyses, 1-degree resolution is sufficient for our purposes. 
For our analysis, we calculate one backwards trajectory per day between 2000 and 2018 
for the months of August to November, which corresponds to the height of the fire season. 
In total, we have approximately 2200 trajectories to analyze. More information about the 
setup and testing of our HYSPLIT model can be found in Appendix C.

We employ two methods for this analysis: clustering and density analysis. Trajectory 
clustering allows us to simplify our large ensemble of trajectories by identifying a smaller 
number of clusters, i.e. trajectories that have similar behaviors. A density analysis 
calculates how many trajectory data points we have in a set of grid boxes, allowing us to 
see which areas are most commonly traversed by modeled air parcels.

Figure 6(a) shows the full ensemble of daily trajectories and Figure 6(b) shows the 
average trajectories of each cluster identified by the HYSPLIT clustering algorithm. The 
percentage of all trajectories represented by each cluster is also provided. Although there 
are seven clusters, this analysis shows three main patterns:

■ A slow relatively local flow from the north and the east. Most of the trajectories 
reaching Rio Branco in six days come from within 1000 km and have traveled 
from the North, over Acre and Amazonas or from the northeast. These account for 
approximately 64% of all trajectories reaching Rio Branco.

■ A fast flow up from the south, partially controlled by the Andes mountains. The 
algorithm identified four such clusters, which travel over very similar areas but at 
varying speeds. Colors in the figure are simply used to distinguish these trajectories. 
In total, these clusters account for approximately 31% of air trajectories arriving at 
Rio Branco. 

■ A fast and widespread flow from the east. Approximately 5% of air parcels arriving 
at Rio Branco come quickly from the east. There is a large latitudinal spread in this 
cluster however.
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Figure 7(a) shows the percentage of all trajectories that passed over each grid cell at least 
once. This data can be thought of intuitively by asking the question: for an air parcel 
arriving at Rio Branco on any day during the fire season, what is the probability that it 
passed over any given grid cell (for at least one hour) during the previous six days? In the 
data, we see a clear spatial skew in the trajectory distribution, approximately oriented 
between NNW and SSE. Here, we are seeing the controlling effect of the Andes mountains 
on the local atmospheric flow. Generally, the most well-defined regimes follow that of the 
cluster analysis above, with trajectories coming from a large and nearby area north of Rio 
Branco, or approaching quickly from the south. Very few to no trajectories come from 
Peru, especially past the Andes mountains, or southwest Bolivia.

Figure 7(a) gives us no information about where most of the air is spending its time 
before arriving at Rio Branco. Each grid square tells us how many trajectories passed over 
for at least one hour, but if a trajectory spends all of its time at that location it only counts 
once. Trajectories can move at different speeds on their six-day journey to Rio Branco, 
with some moving very little distance at all and others traveling 1000s of miles. Figure 
7(b) shows the percentage of time spent across all trajectories in each grid box. Broadly 
speaking, this shows where air parcels arriving at Rio Branco spent their time during the 
previous six days. Many of the structures seen in this data are similar to those in Figure 
7(a), however there are subtle differences. The data is weighted more to the large region 
north of Rio Branco than to the southern trajectories because of the slower moving nature 
of the northern air. The dashed line in the figure shows the radius around Rio Branco in 
which 50% of this distribution lies. 

Figure 6. 20 years of 6-day backward trajectories released from Rio Branco. a) The full ensemble 
of trajectories. Each blue line shows a single daily trajectory. b) Clustered trajectories and their 
percentage contributions to the total ensemble. Colors are only used to distinguish different 
trajectories.
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Figure 7. Gridded distributions of 20 years of backwards trajectories from Rio Branco. a) The 
percentage of trajectories passing over each grid square. b) The proportion of all simulated time 
spent over each grid square.
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4. The future of Rio Branco
The drivers of fire-related air quality, both human and meteorological, are expected to 
undergo significant changes in the future. Deforestation is likely to continue, human 
activity will keep increasing, and global warming will cause changes in precipitation, 
drought, wind, and temperature. In this section, we present two approaches to help us 
predict increases in the number of upstream fires around Rio Branco due to changes in 
climate conditions. The first is the Fire Weather Index and fire danger days, an existing 
concept that we discuss in Section 4.2. We then extend this metric to include land-based 
variables such as land cover and human influence in Section 4.3. In this section, we also 
introduce the concepts of radial and upstream events for Rio Branco. 

4.1 Quantifying fire impact: Radial and upstream analyses

The fire risk projections in this section have been analyzed for the whole study region, 
i.e. Acre, Amazonas, Rondônia, Peru, and Bolivia. However, increased fire risk in some 
areas may have more impact on air quality in Rio Branco than in others. To assess these 
impacts, we have adopted a “radial” and “upstream” approach. A radial event refers to 
an occurrence within a fixed radius around Rio Branco. We can calculate changes within 
these radii by analyzing the two-dimensional distributions of fire counts. The radii used 
are 266 km, 532 km, and 1064 km, based on the radii defined in Section 3’s analysis.

The radial approach does not take into account the patterns of atmospheric flow 
presented in Section 3. Therefore, we combine our fire projections with the trajectory 
percentage dataset (the percentage of trajectories passing over each grid point—see Figure 
7(a)). For a single location, we can estimate statistically how many fire events per year are 
passed over by a trajectory that ultimately arrives at Rio Branco (an upstream event). To 
do this, we multiply the trajectory percentage at this location with the number of events 
per year. For example, suppose a location sees 10% of all trajectories pass over it within 
six days of reaching Rio Branco and this location is also projected to have 20 additional 
fires per year in 2050. On average, this location would contribute two additional fire 
danger days in Rio Branco’s upstream flow. By performing this calculation at every 
location and summing across the whole region, we obtain an estimate of the number of 
“upstream” events for Rio Branco. Mathematically, this is equivalent to taking the dot 
product of the two datasets. 

We can apply this approach to varying time windows for trajectories at Rio Branco. Below, 
we present results for three time windows: 0–2 days upstream, 2–4 days upstream and 
4–6 days upstream.

4.2 Upstream fire danger days

In Section 1 we introduced the Fire Weather Index, a daily, unitless measurement of fire 
danger, derived from temperature, relative humidity, wind speed, and precipitation. It 
is useful to assess fire risk in terms of changes in the number of “fire danger days.” A fire 
danger day is defined as any day with an FWI value in the highest 5% of values at each 
location, i.e., a 1-in-20 day occurrence. This threshold indicates a high-danger fire day, 
where fires have the potential to quickly grow out of control in the event of natural or 
human-caused ignition. Then, we can assess how risk changes in the future by counting 
the number of days with an FWI value greater than these historical extremes. In other 
words, we take the value of the highest 5% of FWI values at every location for the 2000-
2020 period, and count how many times this is exceeded under future time periods. 
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In the analysis below, we use FWI data derived from three CMIP5 models dynamically 
downscaled using REMO2015, for the IPCC RCP85 scenario. This data is bias adjusted 
and statistically downscaled to 1/4-degree resolution. Bias adjustment is done relative to 
ERA5 (Vitolo et al., 2020), a historical gridded dataset that incorporates observations. 
Performing this adjustment means that the bias in the CMIP5 data and ERA5 data will 
match for the historical period, which in our case is 2000–2020. Statistical downscaling 
allows us to obtain a higher resolution dataset.

Figure 8 shows the change in FWI danger days for 2040–2060 and 2070–2090 around 
our study region. We see the number of danger days either stay approximately the same 
or increase in both time periods. Generally, increases are larger for the late century time 
period. In some areas this increase is significant, reaching over 100 additional days per 
year in Northeast Amazonas and low-lying regions of Peru. In the areas immediately 
surrounding Rio Branco however, these increases are generally small.

Figure 8. The change in fire danger days per year relative to 2000-2020 in two future periods 
according to CMIP5 projections under the RCP85 IPCC scenario. A fire danger day is defined as a 
value of Fire Weather Index exceeding the 95th percentile at each location for the reference period.

Increases in fire danger days may lead to increases in the number of fires and therefore 
concentration of particulate matter. Figure 9(a) shows the percentage increase in the 
number of area total fire danger days within three radii around Rio Branco. Within the 
smallest radius, we see increases of 26% and 75% for the 2040-2060 and 2070-2090 time 
periods respectively. For all radii, the number of fire danger days increases towards the 
end of the century. Larger radii see larger increases, which agrees well with the data in 
Figure 8, i.e. as we move further from Rio Branco, we see large increases in the number of 
fire danger days.

Figure 9(b) shows the projected increases in the number of upstream fire danger days 
for 0-2, 2-4 and 4-6 days upstream. Similarly to the radial analysis, we see an increase 
towards the end of the century and the further we move from Rio Branco. 
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4.3 Extending FWI using Machine Learning

The Fire Weather Index is an effective tool for evaluating fire risk, but it alone does 
not provide complete insight into the likelihood of fires. This is due to the fact that fire 
ignition is influenced not only by weather, but also by factors such as land cover, land 
use, and human activity. Furthermore, fire danger days are not an absolute measure of 
risk as they depend on a specific baseline period for each location. To improve upon using 
FWI danger days, we have developed a machine learning model that incorporates these 
additional factors to enhance the FWI.

A machine learning model is a powerful tool that can learn from historical data and make 
predictions based on new inputs. In our case, we want to predict fire occurrence and its 
probability using variables such as FWI and landcover. Machine learning models must 
be “trained” or “fit” to the data that we have, then they can then be applied to provide 
predictions using new inputs. Below, we give a brief description of the model here but see 
Appendix-A for more details on the methodology behind this model.

We develop our model to output the probability of daily fire ignition within 0.25 x 0.25 
grid cells. Inputs to the model are FWI, the proportion of 17 land cover types within 
each cell from the MODIS dataset, human footprint data (Venter, 2018), WGLC lightning 
density dataset (Kaplan, 2021), mean elevation from the SRTM30 dataset, and latitude. 
We use a gridded version of the FiredPy fire event locations to determine whether there 
was a fire event within a given grid cell on a given day. In other words, we provide the 
trained model with all of the above information and it will attempt to give us a probability 
that a fire event started on that day. Once we have applied the model for every day and 
location in the study region, we sum daily probabilities for each year to obtain expected 
annual counts of fire events for each grid cell. For example, if a single grid point has a 
1/365 chance of ignition for every day in the year, we would expect there to be one event 
per year (on average) at that location. A separate model is developed for Peru, Bolivia and 
three Brazilian states to account for social and political differences.

Training of the model is done using FWI data from the ERA5 dataset (Vitolo, 2020) 
for 2000–2018. It is important to assess how accurately the model predictions are. To 
evaluate this, we train the model on a subset of the data and compare its predictions to 

Figure 9. Percentage increases in the area sum number of FWI fire danger days 
a) within 3 different radii around Rio Branco and b) upstream from Rio Branco.
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another subset that it has never seen before. Our analysis shows that 90% of predictions 
are within 15% of the true distribution. That is, if the model predicts a daily probability 
of 10%, the actual observed distribution is between 8.5%–11.5% with 90% confidence. 
Once the models are trained, we use FWI data derived from three CMIP5 model runs to 
obtain projected annual fire counts up to the year 2100. This is done for the IPCC RCP85 
model scenario. 

Figure 10 shows radial counts and upstream counts for the three radii and upstream 
time periods. Here we see relatively little change for all time periods in the number 
of upstream fires until around the year 2050. However, after this point, the number 
increases rapidly. By 2090, our model predicts that the number of annual fires will have 
increased by 34% two days upstream of Rio Branco and 40% for 2–6 days upstream. The 
radial counts show a very similar pattern, with a sudden acceleration in 2050. Generally, 
larger increases tend to be in the same locations as high present-day counts. Broadly 
speaking, this matches up with the data shown in Figure 8. For 2050, increases in FWI 
danger days are small in the areas around Rio Branco but increase significantly by 2090. 

Figure 10. Percentage changes in the number of fires at Rio Branco according to climatological 
projections (RCP85) of FWI and machine learning. a) The percentage change within three annuli 
concentric around Rio Branco. b) The percentage change in 6-day upstream fires. 
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5. Further discussion & conclusions
Air quality is critical for public health, making it a primary driver for research. In Section 
2 of this study, we touched upon an important metric for quantifying the impact of air 
pollution on public health: its impact on life expectancy. Based on data from University 
of Chicago Air Quality Life Index (AQLI) project, it is estimated that meeting World 
Health Organization guidelines could save 2–3 years of life expectancy per person in Acre. 
This highlights the importance of reducing air pollution to improve the quality of life for 
everyone in the community. 

AQLI life expectancy estimates were made using annual mean observations of PM2.5 
across all of Acre. However, in Section 2, we demonstrated that observations on a 
monthly frequency can significantly vary across the state. For instance, the south (near 
Rio Branco) experiences more fire occurrences than the North (near Cruzeiro do Sul), 
resulting in higher seasonal peaks. Understanding how air quality varies across Acre is 
vital for understanding impacts on public health. 

We showed that we can use gridded datasets derived from combinations of models 
and observations to estimate these spatial variations. However, such datasets can lack 
accuracy in areas where observations are sparse. The most reliable way to get locally 
representative observations is through well maintained in-situ instrumentation, such as 
those presented in Section 2, extracted from the Purple Air database. The state of Acre 
has made great progress recently in installing and maintaining such in-situ instruments 
and it is highly recommended that this continues.

The accessibility of air quality data to all communities, including indigenous 
communities, farmers, researching and decision-makers, is crucial. While the Purple Air 
website provides some level of accessibility, the data processing is minimal, and it is not 
tailored for the region. Willian de Flores (Universidade Federal do Acre) has developed 
a website (http://www.acrequalidadedoar.info), that displays processed air quality data 
from the Purple Air database that is bespoke for Acre. The website offers air quality 
information in the Portuguese language by municipality in Acre, comparisons to World 
Health Organization guidelines, color-coded risk levels, and explanations of the data. It 
has seen success in Acre and could serve as a prototype template for other regions seeking 
to improve access to real-time air quality data.

Using the HYSPLIT model, we identified three major regimes for air parcels arriving at 
Rio Branco. Our analysis reveals that approximately 31% of trajectories approach quickly 
from the south, 64% from the nearby areas to the north and east, and a smaller 5% from 
the East. This data is useful for identifying areas that are “upstream” of Rio Branco, and 
with what frequency. Understanding the source of air arriving in the region is a crucial 
step towards reducing the impact of smoke on all communities. For example, our analysis 
shows that across all modeled trajectories, half of the total modeled time was spent within 
just 266 km of Rio Branco. The 31% of air parcels arriving from the south are also likely 
to contribute to the quality of air in Acre. Despite making up a smaller proportion of the 
modeled trajectories, our analysis using the FiredPy model shows more underlying fire 
events. As some of this air and many of these fires are occurring in Bolivia, this shows the 
importance of regional communities and authorities working together to reduce these 
emissions. However, despite the higher fire event density to the south, we emphasize 
that most air parcels are carrying the impacts of nearby areas, meaning that it is future 
decisions made within Brazil—for example around deforestation, urbanization and fire 
control policies—that could have significant consequences for Rio Branco. Conducting 
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similar trajectory analyses with HYSPLIT in other locations surrounding Acre and 
neighboring countries is an essential next step.

Managing and understanding the impact of fire-related air quality in Rio Branco and Acre 
is increasingly important for the future. Our analyses suggest that by 2090, there could 
be an increase of 34% in the number of fires occurring within 0–2 days atmospherically 
upstream of Rio Branco, and 40% for areas within 2–6 days. These increases could lead 
to a significant rise in particulate matter concentrations, with adverse effects on public 
health. Furthermore, these changes are due to meteorological changes only, and do not 
consider possible changes in land cover, land use and human influence. If current trends 
in land use continue, then these projections are likely to be an underestimate in the 
context of the climate scenario used in this study (RCP85). Therefore, our projections 
should be used as a conservative estimate of future upstream fire risk under a high-
emissions scenario.
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Appendices & Methods

A. Developing the fire machine learning model

Objective: Develop a machine learning model to produce daily probabilities of fire 
ignition and estimates of annual ignition counts per year under present and future 
climates. Here, we describe the details and validation of the model.

Model: XGBoost (Chen, 2016). This is a version of gradient boosting (https://en.wikipedia.
org/wiki/Gradient_boosting), which aims to create an optimal decision tree. It is able 
to handle imbalanced data well (ours has a ratio of 1 ignition per 250 data samples 
on average). We implement it using the XGBoost Python package (https://xgboost.
readthedocs.io/en/stable). 

Training data and output: The model is trained to estimate daily probabilities of ignition 
given a set of daily inputs (although not all variables are changing on a daily basis). 
The output used to train the model is a daily gridded ignition product derived using the 
FiredPy fire event model and MODIS burned area data. This dataset consists of a 1/4 
x 1/4 degree grid, with a daily boolean at each location defining whether or not there 
was a FiredPy ignition on that day. These ignition locations are mapped to the nearest 
grid cell in an array with dimensions (time x longitude x latitude). The resulting array 
is a sparse integer array, where a 1 signifies an ignition on that day and location. This is 
a classification task, i.e., the model is trained to provide the probability that a sample 
belongs to one of two classes: ignition or no ignition. Output is defined on a 0.25 x 0.25 
degree grid. So probabilities are “the chance of ignition on a given day within a 0.25 x 0.25 
degree box.”

Daily probabilities can be used to obtain longer term metrics such as the number 
of ignitions per year/return periods and annual spatial ignition distributions. Daily 
probabilities can be converted to expected annual counts by simply summing them at 
each location in the domain. For example, if a grid point sees a daily ignition probability 
of 1/365 for every day, then we would expect to see one ignition per year on average.

Tuning: Grid search cross validation with three folds is used to tune the model 
hyperparameters. We use ROC AUC as a training metric, which is better than more 
common metrics such as accuracy when working with imbalanced data. When tuning the 
model, a balance must be made between the best score (highest ROC) and how long the 
model takes to train. In other words, in some cases, small improvements might be made 
in the ROC AUC, however will triple the training time. This may not be a worthwhile 
improvement.

Calibration: We calibrate our model using isotonic regression.
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Features (Inputs)

Feature Set # Features Description

Fire Weather 
Index (FWI)

1 FWI is a dimensionless index derived using 
atmospheric variables which describes fire risk.

For model training, FWI is derived from ERA5 
reanalysis data. For future projections, it is derived 
from CMIP5 data.

Daily mean values of FWI are used in the model. 
Where the ignition grid is different from the FWI 
grid, a bilinear interpolation is used to regrid the 
data.

Landcover Type Up to 17 Whether an area is dominated by trees or shrubs, 
water or urban areas can have an influence on 
ignition probability. We use the MODIS landcover 
dataset, which as a resolution of 500m and 17 
landcover classes (when using the classification). 

■   Transformation: proportion for each landcover 
class within the grid cells of the ignition grid. The 
result is up to 17 different features, each each 
having value between 0 and 1. 

■   Time interpolations: The source data is available 
between 2000 and 2018, which we interpolate to 
our grid using a nearest neighbour interpolation.

Human 
Footprint

1 Human activities are one of the main sources of 
fire ignition. There are several ways of quantifying 
human influence, for example distance from major 
roadways, population density and urban/cultivated 
land cover types. The Human Footprint dataset 
combines such variables into a single index, which 
we use in the model. 

■   Regridding: Polygon averaging into ignition grid 
cells. 

■  Time interpolation: Linear interpolation.

Lightning Strike 
Density

1 Lightning strikes are also a contributor to fire 
ignition. Using satellite imagery, lightning strike 
flashes can be located and analysed. We use the 
WGLCC dataset to derive a gridded lightning strike 
density feature.

■   Regridding: Bilinear interpolation

■   Time interpolation: Nearest neighbour.

Elevation 1 Elevation affects some variables such as atmospheric 
pressure. We use the 

■   Regridding: Grid cell averages.

■   Time interpolation: N/A Stationary dataset used.

Latitude 1 Latitude can affect day length and phenology, 
amongst other things. We assign with every sample a 
latitude value. This provides one new feature.
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Validation

The model is tested by randomly splitting the data into three six-year splits. The model 
is trained on one split, calibrated on another and validated on the final split. This 
is repeated and the final ROC AUC score is calculated to be 0.92, which is excellent. 
Predicted probabilities are also compared to observed ignition distributions. This is shown 
in Figure A1.

Figure A1. Comparison of predicted probabilities against observed proportions. a) shows the 
cumulative sum (as a proportion of the total number of ignitions) at each predicted probability 
level. b) shows the predicted probabilities compared with observed proportions. Blue line shows 
the mean, dark shading shows where 50% of the data lies and light shading shows 90%.

For the vast majority of ignition events, the model performs well. On average, 90% of 
predicted probability lie within 15% of the true distribution. For example, a prediction 
of 10% will, with 90% confidence, correspond to a real distribution of between 8.5% and 
11.5%. Predictions have little bias until predicted values of around 12% percent, however 
these events are very rare. In fact, over 90% of ignition events lie below 10% probability, 
and half of all ignition events lie under 3% probability. Once we reach 15% probability 
and below, almost all events are accounted for. This seems a little paradoxical, however it 
makes sense. High probability events and occurrences are much rarer events, and account 
for far fewer ignitions. Knowing this, the bias and higher spread at higher probabilities is 
less of a concern.

Data Reconstruction (2015–2018)

To get an estimate of how the model performs in time and space, we can reconstruct 
data for some period of time (2015–2018 here). We do not train the model on this period, 
only in 2001–2015. We can then inspect the reconstructed data and compare spatial and 
temporal patterns with those seen in the observations. Figure A2 shows a comparison of 
the modeled and observed daily ignition probabilities during the 2015–2018 test period. 
The two distributions agree well with each other. This indicates that, generally speaking, 
the model performs well spatially over long periods of time. 
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We must also investigate how well the model performs throughout the year, not just 
averaged over a three-year period. Figure A3 shows the mean daily ignition probability 
during two months of the year: September and April. These two months are fire opposites, 
i.e., September generally sees the highest number of fire ignitions whereas April sees 
the lowest. Again, we see good agreement for both months between the modeled and 
observed distributions. Clearly, the probability of ignitions is lower throughout the 
domain in April than in September for both the model and observations—indicating that 
our model is doing more than simply replicating the average probability.

Figure A2. Mean daily ignition probabilities for the testing period 2015–2018. Blue circle shows the 
location of Rio Branco. Blue circle shows the location of Rio Branco.

Figure A3. Modelled and observed mean daily ignition probabilities for two months: April (top) and 
September (bottom).
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B. HYSPLIT Methodology

HYSPLIT is a model developed by NOAA and ARL. It is designed to do concentration and 
trajectory modeling for point source emissions, making it a good solution for fire smoke 
modeling. It is both Lagrangian and Eulerian approach. Put simply, the model works by 
releasing tracking points into the atmosphere, which it then pushes along (horizontally 
and vertically) using atmospheric data provided by the user. For trajectory analysis, 
a single point is “released,” pushed and followed. For concentration analysis, a large 
ensemble of points are released and tracked. These points also have some randomness 
applied to their movement to simulate real world dispersion in a plume of smoke. After 
the model is finished advecting our points, it counts them into geographical grid boxes to 
estimate concentrations.

Testing and Validation

To gain confidence in the use of our HYSPLIT configuration, we can compare output to real 
world observations. This is a vital step in the development and use of any model. For our 
trajectory analysis, we compare our output to satellite imagery, comparing the location of 
our trajectories against real life fire smoke plumes. We have used MODIS/Terra Corrected 
Reflectance data from 2022 to do this. Snapshots of satellites are chosen based on clarity 
of plumes. For a given satellite snapshot, we use fire locations identified by VIIRS which 
are approximately at the same time as our satellite snapshots. These locations are used 
for initializing trajectories. However, as we do not know the true start time of a given fire, 
we release trajectories for each during an eight-hour period prior to the earlier known 
detection by VIIRS. These are averaged into a single trajectory. The comparison will not 
be one-to-one here, as we are comparing a single trajectory (or the path of a single air 

Figure A4. How does the model probability change with changes in inputs? These partial 
dependence plots attempt to quantify this. Left: Fire Weather Index. Right: Proportion of Savanna.

Model Sensitivity

We can test the sensitivity of our model to better understand how it reacts to changes in 
inputs. Here, we present two examples.

Figure A4 shows the mean response of the model to changes in FWI and Savanna 
proportion. Here, we see an increase in the probability (y-axis) of fire ignition as FWI 
increases. This agrees with what we would expect to see. The response is also non-linear. 
The probability of ignition increases more quickly for low values of FWI, slowing down 
for larger values. Similarly, as the proportion of savanna increases, so does ignition 
probability. This is also expected, as this land cover type is often drier, with shorter and 
sparser vegetation. 
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Figure B1. Six examples of trajectories released in August and September of 
2022 compared with satellite imagery of smoke plumes on the same day. Red 
dots show the VIIRS fire locations, colored dashed lines show the average 
8-hour trajectory.

parcel) against an aggregate smoke plume. However, we will still be able to gain useful 
information, especially on the approximate direction a smoke plume takes.

Figure B1 shows six trajectory 
validation examples. These are taken 
from four different locations around 
the domain and on four different days 
in August and September of 2022. 
The model performs well, getting 
the approximate direction of the 
trajectories correct in all cases. The 
trajectory follows the plumes especially 
well in the top two panels. In the bottom 
two panels, there are some deviations, 
however this is to be expected due to 
reasons discussed above.

Trajectory Analysis

In this study we employed a trajectory 
clustering analysis to 18 years of daily 
backwards trajectory, release at Rio 
Branco. A cluster analysis is a method 
for grouping together a large ensemble 
of trajectories in space and time. 
Fortunately, HYSPLIT comes packaged 
with a number of executables for doing 
this (see https://www.ready.noaa.gov/
documents/Tutorial/html/traj_cluseqn.
html). The aim of the algorithm is to 
assign trajectories to clusters in such 

a way as to minimize spatial variance within clusters and maximize the spatial variance 
between clusters. In other words, trajectories within a cluster should be as similar as 
possible, but the average cluster trajectories should be as different as possible.

For the clustering algorithm, a number of clusters must be provided by the user. There 
is no true “correct” number of clusters to use and each trajectory could be defined as its 
own cluster. Methods exist to find numbers of clusters that split the total spatial variance 
significantly. For this study we used the method recommended for HYSPLIT. All possible 
numbers of trajectories are assessed and their TSV (Total Spatial Variance) is calculated. 
The gradient in TSV is then estimated and the largest value is chosen to identify the 
number of clusters. In our case, seven clusters were identified.

C. Scalability of the methodologies used in this paper

There are a number of components involved in the methodology presented in this paper. 
It is desirable that they can be scaled and reapplied to other regions. Here, we briefly 
outline our thoughts on the feasibility of fast application of these methods.

1. Present day air quality observations. These are obtained from either a single global 
dataset or the AQLI dataset (for life expectancies). In both cases, it is a simple case 
of data retrieval. For the gridded data, the nearest location to a set of points, or a 
region can be extracted quickly. The AQLI dataset provides state and sub-state scale 
estimates of life expectancy impact that can be quickly obtained.
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2. FiredPy fire distributions. FiredPy has event polygons ready for every country on 
earth up until 2021. Up until this year, the data can be quickly obtained and analyzed 
using code in the github repository provided at the top of this report. After this point, 
the FiredPy model will have to be run manually. This is not a slow process however 
(on the country level).

3. HYSPLIT backward trajectory analysis. This can be quick. The HYSPLIT ensemble 
can be run using a single script. All that needs modifying in this script in the desired 
latitude and longitude. A small toolbox has been prepared in Python for then gridding 
trajectories in the ways shown in this paper. Although this step is not as quick as data 
retrieval, it is still scalable and quick.

4. Machine learning fire events. The full code used to train, test and apply the machine 
learning models presented is available in the github repository at the top of this 
document. Reapplying this to other areas requires a shape file and some bespoke 
data files. These can be downloaded from various online repositories. As the data 
expected by the framework is known, the data search does not take long. Although, 
download can take on the order of hours-1 day, depending on how busy download 
servers are. Training and validation could take up to an additional 1–2 days. The main 
potential problem with this analysis is that there is no guarantee that the model will 
be trained sufficiently (although it was acceptable in the three cases presented here). 
Additionally, as the framework is set up now, most of the system is semi-automatic 
except for the tuning step, which must be done manually.

D. Limitations & Future Work

As with any analysis, there are a number of limitations associated with the analyses 
presented in this paper. It is important to understand what these are and how they may 
affect the results. We can also view these limitations in a positive light: they provide 
opportunities for future work and improve our analyses even further.

Observations

Our methodology identified only the density of fire ignition events, and not their 
characteristics. How long a wildfire lasts, how far it spreads and the type of fuel that it 
burns are all critical factors when considering pollutant emissions. These limits place 
fundamental constraints on all of the analyses in this paper: observed fires, training our 
machine learning model, and subsequent projections all use this data. Future analyses 
should attempt to take these extra properties into consideration. The FiredPy tool used in 
this paper can also be used to identify area burned, burn rates and event durations. There 
are also other tools and datasets available which could be of use, for example the Global 
Fire Emissions Database (https://www.globalfiredata.org) and Global Fire Assimilation 
System (https://www.ecmwf.int/en/forecasts/dataset/global-fire-assimilation-system). 

HYSPLIT Simulations

A HYSPLIT trajectory follows the path of a single air parcel (forwards or backwards), 
however it does not model phenomena such as dispersion of particles, mixing of air 
parcels, atmospheric residence time or chemistry. Dispersion and mixing may be partially 
accounted for by the 20-year ensemble approach taken in this study. Our approach also 
does not provide estimates of concentrations of pollutants in the air, hence why in this 
study we talk only in terms of “upstream fires.” A next step in this work is to improve 
upon our backwards trajectory analysis using a backwards concentration analysis at Rio 
Branco (still using HYSPLIT). This works similarly to our trajectory analysis, only an 
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ensemble of tracers are released each day, rather than a single trajectory. This would be 
able to account for dispersion and atmospheric residence time, although these parameters 
would still need to be chosen.

Even using backwards concentration simulations instead of trajectories does not provide 
direct estimates of pollutant concentrations or how they will change in the future. 
HYSPLIT is capable of doing full forward concentration simulations, which would 
include advection by the air, atmospheric residence times and dispersion. However, 
the model still does not include chemistry and its output can be arbitrary in its units. 
Despite this, an important next step for this work would be to run a full ensemble of 
fire smoke simulations, using either observed or projected locations as emission points. 
This could provide actual concentration estimates at Rio Branco and, by separating 
separate fire runs, could provide additional information of which areas contribute the 
most smoke. However, there are significant challenges associated with this approach. The 
fire observations and projections we have used in this study only describe the number 
of events per year in geographical grid cells. To perform a full forwards concentration 
ensemble accurately, we would need to estimate the duration of fires, size of fires, 
emission rate, plume height (from heat estimates) and fuel type. Many of these variables 
are available for the present period, and it may be possible to project into the future by 
randomly sampling these values from geographical bins. Alternatively, a framework that 
includes emission modeling, such as BlueSky (https://portal.airfire.org) could be used.

Machine Learning Model

There are a number of ways this machine learning model could potentially be improved. 
For example, separating FWI into its constituent components (temperature, relative 
humidity, precipitation, wind speed) may help the model to account for complex 
interactions not captured by the unitless FWI. Although we provided land cover types, 
the model has no way of estimating land cover dynamics, which could be a driver of 
fire risk. This could be done simply by using the annual change in land cover, or by 
providing deforestation, land use or tree loss datasets. It is also important to note that 
the predictions made by the machine learning model may be underestimated due to fire 
events missed by the satellite data.

For this study, we only considered projected fire counts based on changes in FWI. These 
changes were derived from dynamically downscaled CMIP5 projections using the RCP85 
scenario. While this scenario implies very high levels of emissions it was deemed more 
realistic than RCP26, the only other IPCC scenario simulated with REMO2015. What’s 
more, the time periods used can be understood as warming levels; with 2000–2020, 
2040–2060 and 2070–2090 corresponding to a 1°C, 2°C, and slightly over 3°C world 
respectively. The latter two warming levels are plausible outcomes given current levels 
of emissions and climate policy. In our machine learning we used land cover and human 
footprint information static at the year 2000 or 2020 throughout the projection. Future 
applications of this model could include projecting fire counts for hypothetical future 
land cover distributions, beyond those implied in IPCC scenarios, with varying levels of 
deforestation and urban development.
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